Large Eddy Simulation of Flow and Tracer Transport in Multichamber Ozone Contactors

نویسندگان

  • Dongjin Kim
  • Doo-Il Kim
  • Jae-Hong Kim
  • Thorsten Stoesser
چکیده

Three-dimensional numerical analyses of flow and transport characteristics in two representative multichamber ozone contactor models with different chamber width were conducted using large eddy simulation LES . Both time-averaged and instantaneous flow patterns suggest that the flow is characterized by the occurrence of large turbulent structures leading to extensive short-circuiting between chambers and internal recirculation inside the chambers. The flow is also found to be highly three-dimensional, as secondary vortices and recirculation zones develop. The simulation results further suggest that the hydrodynamics in ozone contactors can be improved by reducing the chamber width. The results of the LES are qualitatively verified using previously reported tracer test results obtained from laboratory experiments. The LES technique, applied to the ozone contactor flow and transport of a tracer for the first time, is expected to serve as a powerful tool for existing reactor flow diagnosis, reactor retrofitting as well as for new reactor design. DOI: 10.1061/ ASCE EE.1943-7870.0000118 CE Database subject headings: Ozone; Hydrodynamics; Recirculation; Computational fluid dynamics technique; Simulation; Probe instruments. Author keywords: Ozone contractor; Hydrodynamics; Short-circuiting recirculation; Computational fluid dynamics CFD ; Large eddy simulation LES ; Residence time distribution RTD .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Developments in computational fluid dynamics-based modeling for disinfection technologies over the last two decades: A review

In the last two decades, Computational Fluid Dynamics (CFD) has shown great potential as a powerful and cost-efficient tool to troubleshoot existing disinfection contactors and improve future designs for water treatment industry. However, numerous challenges in the simulation of water disinfection processes still remain. This review summarizes past CFD studies of the hydraulic and associated di...

متن کامل

Large-eddy simulation of turbulent flow over an array of wall-mounted cubes submerged in an emulated atmospheric boundary-layer

Turbulent flow over an array of wall-mounted cubic obstacles has been numerically investigated using large-eddy simulation. The simulations have been performed using high-performance computations with local cluster systems. The array of cubes are fully submerged in a simulated deep rough-wall atmospheric boundary-layer with high turbulence intensity characteristics of environmental turbulent fl...

متن کامل

Mixed Large-Eddy Simulation Model for Turbulent Flows across Tube Bundles Using Parallel Coupled Multiblock NS Solver

In this study, turbulent flow around a tube bundle in non-orthogonal grid is simulated using the Large Eddy Simulation (LES) technique and parallelization of fully coupled Navier – Stokes (NS) equations. To model the small eddies, the Smagorinsky and a mixed model was used. This model represents the effect of dissipation and the grid-scale and subgrid-scale interactions. The fully coupled NS eq...

متن کامل

Mixed Large-Eddy Simulation Model for Turbulent Flows across Tube Bundles Using Parallel Coupled Multiblock NS Solver

In this study, turbulent flow around a tube bundle in non-orthogonal grid is simulated using the Large Eddy Simulation (LES) technique and parallelization of fully coupled Navier – Stokes (NS) equations. To model the small eddies, the Smagorinsky and a mixed model was used. This model represents the effect of dissipation and the grid-scale and subgrid-scale interactions. The fully coupled NS eq...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009